QPR ProcessAnalyzer API: Difference between revisions

From QPR ProcessAnalyzer Wiki
Jump to navigation Jump to search
 
(73 intermediate revisions by the same user not shown)
Line 1: Line 1:
QPR ProcessAnalyzer API's can be used to automate operations in process mining or create integration with other applications. QPR ProcessAnalyzer has two API:
== Introduction ==
* '''Web API''': REST-based API used by the web UI.
QPR ProcessAnalyzer API can be used to create integrations to other applications and automate operations in the process mining environment.
* '''WCF API''': Older API used by the Excel Client and ScriptLauncher.


Prefer the Web API, because WCF API is a legacy API that will be removed in future.
QPR ProcessAnalyzer API is a JSON-based API following the REST design principles. Most of the endpoints require a prior login to establish a session. The session is initialized with the [[Web_API:_Token|token]] call with username and password, and the access token is returned as a response for a successful login. The endpoints requiring prior authenticated session, need to have a HTTP request header ''Authorization'' with value ''Bearer <access token>'' to identify the session.


== Web API ==
Url for calling the API has the following form (replace the server hostname with a correct one):
The Web API is a JSON based API using the REST design principle. All operations require a prior login which is done with the ''Token'' operation with username and password (the access token is returned as a response for a successful login). All operations (except the Token) need to have a HTTP request header ''Authorization'' with value ''Bearer <access token>'' in place to identify the session.
 
Url for calling the API has the following form (replace the DNS name with a correct one):
<pre>
<pre>
https://customer.onqpr.com/qprpa/api/<operationName>
https://customer.onqpr.com/qprpa/api/<endpointName>
</pre>
</pre>


Following operations are available:
== Available endpoints ==
* [[Web_API:_Token|token]]: Login user using username and password, and get a session token as a response.
Following endpoints are available:
* [[Web_API:_Signout|signout]]: Logs out a session.
{| class="wikitable"
* [[Web_API:_Expression/query|expression/query]]: Run query in the server and returns results as a response.
!'''Endpoint'''
* [[Web_API:_Cancel|cancel]]: Cancels currently running operation.
! '''Description'''
* [[Web_API:_Filters|filters]]: Get all filters in system or filters in a model.
|-
* [[Web_API:_Serverinfo|serverinfo]]: Gets the default UI language in whether SSO has been configured.
||[[Web_API:_Token|token]]
* [[Web_API:_Importfile|importfile]]: Import data into models and datatables from .csv, .xes and .pacm files.
||Login user using username and password and get a session token as a response.
* [[Web_API:_Usersettings|usersettings]]: Save user specific settings to the server.
|-
* [[Web_API:_Operations/terminate|operations/terminate]]: Terminates selected operations (i.e. end tasks).
||[[Web_API:_Signout|api/signout]]
||Logs out a user session.
|-
||[[Web_API:_Expression|api/expression]]
||Runs an expression.
|-
||[[Web_API:_Expression/query|api/expression/query]]
||Runs query written using the expression language and returns result data as response.
|-
||[[Web_API:_Filters|api/filters]]
||Get filters for all models or filters for a single model.
|-
||[[Web_API:_Serverinfo|api/serverinfo]]
||Returns common system information needed by UI, such as the default UI language and in whether SSO has been configured.
|-
||[[Web_API:_Importfile|api/importfile]]
||Import data into datatable from .csv, .xes or .pacm file.
|-
||[[Web_API:_Usersettings|api/usersettings]]
||Save user specific settings to the server.
|-
||[[Web_API:_Operations/terminate|api/operations/terminate]]
||Stops the defined tasks (by the task id) to save computing resources.
|-
||[[Web_API:_Cancel|api/analysis/cancel]]
||Stops currently running tasks (by the task identifier) to save computing resources.
|-
||[[Web_API:_saml2/acs|Saml2/Acs]]
||Identity provider (IdP) will send the SAML 2.0 assertion to this endpoint which will respond with 302 to redirect to QPR ProcessAnalyzer UI.
|-
||[[Web_API:_saml2|Saml2]]
||Returns the SAML 2.0 service provider (SP) metadata, if SAML 2.0 authentication has been configured.
|}


In addition, there are Web API operations for
In addition, there are endpoints for
*[[Web API for Workspace Elements|workspace elements]]
* [[Web API for Workspace Elements|moving and deleting workspace elements]]
* [[Web_API_for_Projects|projects]]
* [[Web_API_for_Dashboards|dashboards]]
* [[Web_API_for_Models|models]]
* [[Web_API_for_Datatables|datatables]]
* [[Web_API_for_Datatables|datatables]]
* [[Web_API_for_Models|models]]
* [[Web_API_for_Scripts|scripts]]
* [[Web_API_for_User_Management|user management]]
* [[Web_API_for_User_Management|users, groups and roles]]
 
== Usage examples ==
=== Run query to fetch data ===
Following Python function performs a query to fetch data from QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) run the query, (3) write fetched data to a file, and (4) log out.
 
The query is in the "json" parameter of the /api/expression/query request. For example, query for a chart can be found in the chart settings ''Advanced'' tab by clicking the ''Query'' button.
 
<syntaxhighlight lang="python" line>
def runQuery(serverUrl: str, username: str, password: str):
  import requests
  import json
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
 
  queryResponse = requests.post(
    url = serverUrl + "/api/expression/query",
    headers = {
      "Authorization": "Bearer " + sessionToken
    },
    json = {
      "ProcessingMethod": "dataframe",
      "ContextType": "model",
      "ModelId": 1,
      "Root": "Cases",
      "MaximumRowCount": 10,
      "Dimensions": None,
      "Values": [
        {
          "Name": "CaseId",
          "Expression": "CaseId"
        },
        {
          "Name": "StartTime",
          "Expression": "AggregateFrom(Events, \"Min\", TimeStamp)"
        },
        {
          "Name": "EndTime",
          "Expression": "AggregateFrom(Events, \"Max\", TimeStamp)"
        },
        {
          "Name": "EventCount",
          "Expression": "AggregateFrom(Events, \"Count\")"
        },
        {
          "Name": "EventTypeCount",
          "Expression": "AggregateFrom(Events, \"CountDistinct\", EventType)"
        }
      ],
      "Ordering": [
        {
          "Name": "CaseId",
          "Direction": "Ascending"
        }
      ]
    }
  )
  queryResponse.raise_for_status()
   
  with open("QueriedData.json", "w") as f:
    json.dump(queryResponse.json(), f)
 
  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()
</syntaxhighlight>
 
The function can be called as follows:
<syntaxhighlight lang="python" line>
runQuery(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo"
)
</syntaxhighlight>
 
=== Trigger script run ===
Following Python function starts a script in QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) start the script, and (3) log out. The call just starts the script without waiting for it to complete (asynchronous behavior).
 
<syntaxhighlight lang="python" line>
def startQprProcessAnalyzerScript(serverUrl: str, username: str, password: str, scriptId: int):
  import requests
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
 
  startScriptResponse = requests.post(
    url = serverUrl + "/api/scripts/run/" + str(scriptId),
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  startScriptResponse.raise_for_status()
 
  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()
</syntaxhighlight>
 
The function can be called as follows:
<syntaxhighlight lang="python" line>
startQprProcessAnalyzerScript(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo",
  scriptId = 1
)
</syntaxhighlight>
The script id can be found in the scripts list in the Workspace.


== WCF API ==
=== Synchronize users and groups ===
All WCF API operations only accept HTTP POST method (HTTP GET is not allowed). WCF API can be used with ''wsHttp'' (SOAP) and ''webHttp'' endpoints.
Following script written in Python updates QPR ProcessAnalyzer users and groups based on the provided dataset. This script can be extended to fetch the user data from an external source (e.g., Azure AD) to implement a complete user management integration between the systems.


The following methods are available in the WCF API:
This script performs following steps:
* [[QPR ProcessAnalyzer API: Authenticate|Authenticate]]: Tries to authenticate given user with given password and authentication parameters.
# Read the provided dataset and store it to in-memory structures.
* [[QPR ProcessAnalyzer API: GetStream|GetStream]] can be used to query contents of a stream bound to the given session identified by given stream id.
# Read all users from QPR ProcessAnalyzer (including which groups the users belong to). (POST /api/expression/query)
* [[QPR ProcessAnalyzer API: LogOff|LogOff]]: Logs off the user session.
# Read all groups from QPR ProcessAnalyzer. (POST /api/expression/query)
* [[QPR ProcessAnalyzer API: RunScript|RunScript]] can be used to execute given script using given parameters.
# Determine the gap between the current state in the user management and the provided dataset.
# Create new users appearing in the dataset to QPR ProcessAnalyzer. (POST /api/users)
# Inactivate non-existing users in the dataset from QPR ProcessAnalyzer. (PUT /api/users)
# Activate existing inactive users in QPR ProcessAnalyzer that exist in the dataset. (PUT /api/users)
# Add users to groups and remove from groups based on the determined gap in the state. (PUT/DELETE /api/users/memberships)


== WCF API Usage Examples ==
Users are queried as follows:
=== JavaScript Examples ===
<pre>
<pre>
//login               
{
$.ajax({
  "Dimensions": null,
  "method": "POST",
  "Values": [
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/Authenticate",
      {
  "dataType": "json", "contentType": "application/json; charset=utf-8",
        "Name": "Id",
  "data": JSON.stringify({
        "Expression": "Id"
    'logOnName': '<username>',
      },
    'password': '<password>',
      {
    'parameters': ''
        "Name": "Name",
  })
        "Expression": "Name"
});                     
      },
      {
        "Name": "IsActive",
        "Expression": "IsActive"
      },
      {
        "Name": "Groups",
        "Expression": "ToJson(OrderByValue(Groups.Id))"
      }
  ],
  "Root": "Users",
  "ContextType": "generic"
}
</pre>
</pre>


Groups are queried as follows:
<pre>
<pre>
//log off
{
$.ajax({
  "Dimensions": null,
  "method": "POST",
  "Values": [
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/LogOff",
      {
  "dataType": "json", "contentType": "application/json; charset=utf-8",
        "Name": "Id",
  "data": JSON.stringify({
        "Expression": "Id"
    "sessionId": sessionId
      },
  })
      {
});
        "Name": "Name",
        "Expression": "Name"
      }
  ],
  "Root": "UserGroups",
  "ContextType": "generic"
}
</pre>
</pre>


=== PowerShell Example: [[Move Data from QPR ProcessAnalyzer to Database using PowerShell]] ===
Request /api/users/memberships body:
 
<pre>
__NOTOC__
{
  "GroupId": 1,
  "MemberId": 2,
  "RoleName": "Member"
}
</pre>


[[Category: QPR ProcessAnalyzer]]
<syntaxhighlight lang="python" line>
...
</syntaxhighlight>

Latest revision as of 09:38, 28 March 2025

Introduction

QPR ProcessAnalyzer API can be used to create integrations to other applications and automate operations in the process mining environment.

QPR ProcessAnalyzer API is a JSON-based API following the REST design principles. Most of the endpoints require a prior login to establish a session. The session is initialized with the token call with username and password, and the access token is returned as a response for a successful login. The endpoints requiring prior authenticated session, need to have a HTTP request header Authorization with value Bearer <access token> to identify the session.

Url for calling the API has the following form (replace the server hostname with a correct one):

https://customer.onqpr.com/qprpa/api/<endpointName>

Available endpoints

Following endpoints are available:

Endpoint Description
token Login user using username and password and get a session token as a response.
api/signout Logs out a user session.
api/expression Runs an expression.
api/expression/query Runs query written using the expression language and returns result data as response.
api/filters Get filters for all models or filters for a single model.
api/serverinfo Returns common system information needed by UI, such as the default UI language and in whether SSO has been configured.
api/importfile Import data into datatable from .csv, .xes or .pacm file.
api/usersettings Save user specific settings to the server.
api/operations/terminate Stops the defined tasks (by the task id) to save computing resources.
api/analysis/cancel Stops currently running tasks (by the task identifier) to save computing resources.
Saml2/Acs Identity provider (IdP) will send the SAML 2.0 assertion to this endpoint which will respond with 302 to redirect to QPR ProcessAnalyzer UI.
Saml2 Returns the SAML 2.0 service provider (SP) metadata, if SAML 2.0 authentication has been configured.

In addition, there are endpoints for

Usage examples

Run query to fetch data

Following Python function performs a query to fetch data from QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) run the query, (3) write fetched data to a file, and (4) log out.

The query is in the "json" parameter of the /api/expression/query request. For example, query for a chart can be found in the chart settings Advanced tab by clicking the Query button.

def runQuery(serverUrl: str, username: str, password: str):
  import requests
  import json
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
  
  queryResponse = requests.post(
    url = serverUrl + "/api/expression/query",
    headers = {
      "Authorization": "Bearer " + sessionToken
    },
    json = {
      "ProcessingMethod": "dataframe",
      "ContextType": "model",
      "ModelId": 1,
      "Root": "Cases",
      "MaximumRowCount": 10,
      "Dimensions": None,
      "Values": [
        {
          "Name": "CaseId",
          "Expression": "CaseId"
        },
        {
          "Name": "StartTime",
          "Expression": "AggregateFrom(Events, \"Min\", TimeStamp)"
        },
        {
          "Name": "EndTime",
          "Expression": "AggregateFrom(Events, \"Max\", TimeStamp)"
        },
        {
          "Name": "EventCount",
          "Expression": "AggregateFrom(Events, \"Count\")"
        },
        {
          "Name": "EventTypeCount",
          "Expression": "AggregateFrom(Events, \"CountDistinct\", EventType)"
        }
      ],
      "Ordering": [
        {
          "Name": "CaseId",
          "Direction": "Ascending"
        }
      ]
    }
  )
  queryResponse.raise_for_status()
    
  with open("QueriedData.json", "w") as f:
    json.dump(queryResponse.json(), f)

  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()

The function can be called as follows:

runQuery(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo"
)

Trigger script run

Following Python function starts a script in QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) start the script, and (3) log out. The call just starts the script without waiting for it to complete (asynchronous behavior).

def startQprProcessAnalyzerScript(serverUrl: str, username: str, password: str, scriptId: int):
  import requests
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
  
  startScriptResponse = requests.post(
    url = serverUrl + "/api/scripts/run/" + str(scriptId),
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  startScriptResponse.raise_for_status()

  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()

The function can be called as follows:

startQprProcessAnalyzerScript(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo",
  scriptId = 1
)

The script id can be found in the scripts list in the Workspace.

Synchronize users and groups

Following script written in Python updates QPR ProcessAnalyzer users and groups based on the provided dataset. This script can be extended to fetch the user data from an external source (e.g., Azure AD) to implement a complete user management integration between the systems.

This script performs following steps:

  1. Read the provided dataset and store it to in-memory structures.
  2. Read all users from QPR ProcessAnalyzer (including which groups the users belong to). (POST /api/expression/query)
  3. Read all groups from QPR ProcessAnalyzer. (POST /api/expression/query)
  4. Determine the gap between the current state in the user management and the provided dataset.
  5. Create new users appearing in the dataset to QPR ProcessAnalyzer. (POST /api/users)
  6. Inactivate non-existing users in the dataset from QPR ProcessAnalyzer. (PUT /api/users)
  7. Activate existing inactive users in QPR ProcessAnalyzer that exist in the dataset. (PUT /api/users)
  8. Add users to groups and remove from groups based on the determined gap in the state. (PUT/DELETE /api/users/memberships)

Users are queried as follows:

{
   "Dimensions": null,
   "Values": [
      {
         "Name": "Id",
         "Expression": "Id"
      },
      {
         "Name": "Name",
         "Expression": "Name"
      },
      {
         "Name": "IsActive",
         "Expression": "IsActive"
      },
      {
         "Name": "Groups",
         "Expression": "ToJson(OrderByValue(Groups.Id))"
      }
   ],
   "Root": "Users",
   "ContextType": "generic"
}

Groups are queried as follows:

{
   "Dimensions": null,
   "Values": [
      {
         "Name": "Id",
         "Expression": "Id"
      },
      {
         "Name": "Name",
         "Expression": "Name"
      }
   ],
   "Root": "UserGroups",
   "ContextType": "generic"
}

Request /api/users/memberships body:

{
  "GroupId": 1,
  "MemberId": 2,
  "RoleName": "Member"
}
...