QPR ProcessAnalyzer API: Difference between revisions

From QPR ProcessAnalyzer Wiki
Jump to navigation Jump to search
 
(170 intermediate revisions by 3 users not shown)
Line 1: Line 1:
QPR ProcessAnalzyer Web Service API (Application Programming Interface) can be used to automate operations and to create integration with other applications.
== Introduction ==
QPR ProcessAnalyzer API can be used to create integrations to other applications and automate operations in the process mining environment.


== Functions in the Web Service API ==
QPR ProcessAnalyzer API is a JSON-based API following the REST design principles. Most of the endpoints require a prior login to establish a session. The session is initialized with the [[Web_API:_Token|token]] call with username and password, and the access token is returned as a response for a successful login. The endpoints requiring prior authenticated session, need to have a HTTP request header ''Authorization'' with value ''Bearer <access token>'' to identify the session.
The following functions are available:
* [[QueryObjectProperties (API)|QueryObjectProperties]] returns all the listed properties queried for all the listed objects identified by unique identifiers.
* [[ValidateModel (API)|ValidateModel]] can be used to perform all the pending tasks stored in the work queue of the given model.


== Object Types and Their Properties ==
Url for calling the API has the following form (replace the server hostname with a correct one):
* Common Properties for Object Types
<pre>
The following properties are supported by all ProcessAnalyzer object types. These properties are used in the "properties" argument of the [[QueryObjectProperties (API)|QueryObjectProperties]] function:<br/>
https://customer.onqpr.com/qprpa/api/<endpointName>
: '''typename''': Name of the type of the object.<br/>
</pre>
: '''name''': Name of the given object.<br/>
: '''properties''': List of all the supported properties for given object.<br/>
: '''relatedcount''': Integer number of how many child nodes there are in the next level of given hierarchy. This is 0 if the element doesn't support the relation or there are no child objects for the given object in given hierarchy. Requires hierarchy-parameter to be defined.


=== DataTable ===
== Available endpoints ==
The following properties are supported by the DataTable object type:
Following endpoints are available:
* '''typename''': "DataTable"
{| class="wikitable"
* '''<column identifier>''': A Data Table column name converted to script name and also prefixed with"custom_" when used as an object property name in QueryObjectProperties. For example: when the Data Table column name is "Actual", the column identifier is "custom_actual".
!'''Endpoint'''
+ all Common Supported Properties
! '''Description'''
|-
||[[Web_API:_Token|token]]
||Login user using username and password and get a session token as a response.
|-
||[[Web_API:_Signout|api/signout]]
||Logs out a user session.
|-
||[[Web_API:_Expression|api/expression]]
||Runs an expression.
|-
||[[Web_API:_Expression/query|api/expression/query]]
||Runs query written using the expression language and returns result data as response.
|-
||[[Web_API:_Filters|api/filters]]
||Get filters for all models or filters for a single model.
|-
||[[Web_API:_Serverinfo|api/serverinfo]]
||Returns common system information needed by UI, such as the default UI language and in whether SSO has been configured.
|-
||[[Web_API:_Importfile|api/importfile]]
||Import data into datatable from .csv, .xes or .pacm file.
|-
||[[Web_API:_Usersettings|api/usersettings]]
||Save user specific settings to the server.
|-
||[[Web_API:_Operations/terminate|api/operations/terminate]]
||Stops the defined tasks (by the task id) to save computing resources.
|-
||[[Web_API:_Cancel|api/analysis/cancel]]
||Stops currently running tasks (by the task identifier) to save computing resources.
|-
||[[Web_API:_saml2/acs|Saml2/Acs]]
||Identity provider (IdP) will send the SAML 2.0 assertion to this endpoint which will respond with 302 to redirect to QPR ProcessAnalyzer UI.
|-
||[[Web_API:_saml2|Saml2]]
||Returns the SAML 2.0 service provider (SP) metadata, if SAML 2.0 authentication has been configured.
|}


=== Product ===
In addition, there are endpoints for
The following properties are supported by the Product object type:
* [[Web API for Workspace Elements|moving and deleting workspace elements]]
* '''typename''': "product"
* [[Web_API_for_Projects|projects]]
* '''name''': Name of the product (QPR ProcessAnalyzer)
* [[Web_API_for_Dashboards|dashboards]]
* '''version''': Dll version of the Qpr.ProcessAnalyzer.Core.dll
* [[Web_API_for_Models|models]]
* [[Web_API_for_Datatables|datatables]]
* [[Web_API_for_Scripts|scripts]]
* [[Web_API_for_User_Management|users, groups and roles]]


Supported Relations:
== Usage examples ==
* '''related''': Returns the related objects. Supported relation hierarchies are:
=== Run query to fetch data ===
* '''datatable''': Returns all the projects available for the user.
Following Python function performs a query to fetch data from QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) run the query, (3) write fetched data to a file, and (4) log out.


+ all Common Supported Properties
The query is in the "json" parameter of the /api/expression/query request. For example, query for a chart can be found in the chart settings ''Advanced'' tab by clicking the ''Query'' button.


=== Project ===
<syntaxhighlight lang="python" line>
The following properties are supported by the Project object type:
def runQuery(serverUrl: str, username: str, password: str):
* '''typename''': "Project"
  import requests
  import json
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
 
  queryResponse = requests.post(
    url = serverUrl + "/api/expression/query",
    headers = {
      "Authorization": "Bearer " + sessionToken
    },
    json = {
      "ProcessingMethod": "dataframe",
      "ContextType": "model",
      "ModelId": 1,
      "Root": "Cases",
      "MaximumRowCount": 10,
      "Dimensions": None,
      "Values": [
        {
          "Name": "CaseId",
          "Expression": "CaseId"
        },
        {
          "Name": "StartTime",
          "Expression": "AggregateFrom(Events, \"Min\", TimeStamp)"
        },
        {
          "Name": "EndTime",
          "Expression": "AggregateFrom(Events, \"Max\", TimeStamp)"
        },
        {
          "Name": "EventCount",
          "Expression": "AggregateFrom(Events, \"Count\")"
        },
        {
          "Name": "EventTypeCount",
          "Expression": "AggregateFrom(Events, \"CountDistinct\", EventType)"
        }
      ],
      "Ordering": [
        {
          "Name": "CaseId",
          "Direction": "Ascending"
        }
      ]
    }
  )
  queryResponse.raise_for_status()
   
  with open("QueriedData.json", "w") as f:
    json.dump(queryResponse.json(), f)


Supported Relations:
  logOutResponse = requests.post(
* '''related''': Returns the related objects. Supported relation hierarchies are:
    url = serverUrl + "/api/signout",
* '''datatable''': Returns all the data tables in given project available for the user.
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()
</syntaxhighlight>


+ all Common Supported Properties
The function can be called as follows:
<syntaxhighlight lang="python" line>
runQuery(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo"
)
</syntaxhighlight>


== Identifying QPR ProcessAnalyzer Objects ==
=== Trigger script run ===
QPR ProcessAnalyzer unique identifiers are used to uniquely identify any object in QPR ProcessAnalyzer. The format of a unique identifier is:
Following Python function starts a script in QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) start the script, and (3) log out. The call just starts the script without waiting for it to complete (asynchronous behavior).


'''PA.<type>.<object>'''
<syntaxhighlight lang="python" line>
def startQprProcessAnalyzerScript(serverUrl: str, username: str, password: str, scriptId: int):
  import requests
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
 
  startScriptResponse = requests.post(
    url = serverUrl + "/api/scripts/run/" + str(scriptId),
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  startScriptResponse.raise_for_status()


In the format, '''<type>''' can be any of the following:
  logOutResponse = requests.post(
* '''0''': undefined (reserved, do not use)
    url = serverUrl + "/api/signout",
* '''1''': project
    headers = {
* '''2''': data table
      "Authorization": "Bearer " + sessionToken,
* '''3''': model
      "Content-type": "application/json"
* '''4''': filter
    }
* '''5''': bookmark
  )
  logOutResponse.raise_for_status()
</syntaxhighlight>


== Example Usage==
The function can be called as follows:
<pre>
<syntaxhighlight lang="python" line>
//login               
startQprProcessAnalyzerScript(
$.ajax({
   serverUrl = "https://server.onqpr.com/qprpa",
   "method": "POST",
   username = "qpr",
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/Authenticate",
  password = "demo",
   "dataType": "json", "contentType": "application/json; charset=utf-8",
   scriptId = 1
   "data": JSON.stringify({
)
    'logOnName': '<username>',
</syntaxhighlight>
    'password': '<password>',
The script id can be found in the scripts list in the Workspace.
    'parameters': ''
  })
});                     


//create user
=== Synchronize users and groups ===
$.ajax({
Following script written in Python updates QPR ProcessAnalyzer users and groups based on the provided dataset. This script can be extended to fetch the user data from an external source (e.g., Azure AD) to implement a complete user management integration between the systems.
  "method": "POST",
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/SetUser",
  "dataType": "json", "contentType": "application/json; charset=utf-8",
  "data": JSON.stringify({
    "sessionId": "547c1aa5-e85b-4642-bbb1-8cb656015002",
    "user": {"Name": "user", "FullName": "first last" },
    "parameters": [{"Key": "Password", "Value": "demo"}]
  })
});


//add user to group, value 8:12:0 is user:group:member type
This script performs following steps:
$.ajax({
# Read the provided dataset and store it to in-memory structures.
  "method": "POST",
# Read all users from QPR ProcessAnalyzer (including which groups the users belong to). (POST /api/expression/query)
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/ModifyUserRelations",
# Read all groups from QPR ProcessAnalyzer. (POST /api/expression/query)
  "dataType": "json", "contentType": "application/json; charset=utf-8",
# Determine the gap between the current state in the user management and the provided dataset.
  "data": JSON.stringify({
# Create new users appearing in the dataset to QPR ProcessAnalyzer. (POST /api/users)
    "sessionId": "749dcbdb-e57b-434b-a739-1f4ddc7ebc30",
# Inactivate non-existing users in the dataset from QPR ProcessAnalyzer. (PUT /api/users)
    "parameters": [{"Key": "AddGroups", "Value": "8:12:0"}]
# Activate existing inactive users in QPR ProcessAnalyzer that exist in the dataset. (PUT /api/users)
  })
# Add users to groups and remove from groups based on the determined gap in the state. (PUT/DELETE /api/users/memberships)
});


//log off
Users are queried as follows:
$.ajax({
<pre>
  "method": "POST",
{
  "url": "http://localhost/qprpa/Mainservice.svc/webHttp/LogOff",
  "Dimensions": null,
  "dataType": "json", "contentType": "application/json; charset=utf-8",
  "Values": [
  "data": JSON.stringify({  
      {
    "sessionId":"75aa3d08-5ad9-4b0b-8981-7daca98348cd"
        "Name": "Id",
  })
        "Expression": "Id"
});
      },
      {
        "Name": "Name",
        "Expression": "Name"
      },
      {
        "Name": "IsActive",
        "Expression": "IsActive"
      },
      {
        "Name": "Groups",
        "Expression": "ToJson(OrderByValue(Groups.Id))"
      }
  ],
  "Root": "Users",
  "ContextType": "generic"
}
</pre>
 
Groups are queried as follows:
<pre>
{
  "Dimensions": null,
  "Values": [
      {
        "Name": "Id",
        "Expression": "Id"
      },
      {
        "Name": "Name",
        "Expression": "Name"
      }
  ],
  "Root": "UserGroups",
  "ContextType": "generic"
}
</pre>
</pre>


== PowerShell example of listing users ==
Request /api/users/memberships body:
<pre>
<pre>
$paService=New-WebServiceProxy –Uri "http://localhost/qprpa/MainService.svc"
{
$connection=$paService.Authenticate("username", "password", @())
  "GroupId": 1,
$token=$connection.GetValue(0).Value
  "MemberId": 2,
$token
  "RoleName": "Member"
$param=@()
}
$users=$paService.GetUsers($token, $null, $param)
$users
$paService | get-member | ? {$_.definition -match "GetAnalysis"}
</pre>
</pre>

Latest revision as of 08:41, 2 June 2025

Introduction

QPR ProcessAnalyzer API can be used to create integrations to other applications and automate operations in the process mining environment.

QPR ProcessAnalyzer API is a JSON-based API following the REST design principles. Most of the endpoints require a prior login to establish a session. The session is initialized with the token call with username and password, and the access token is returned as a response for a successful login. The endpoints requiring prior authenticated session, need to have a HTTP request header Authorization with value Bearer <access token> to identify the session.

Url for calling the API has the following form (replace the server hostname with a correct one):

https://customer.onqpr.com/qprpa/api/<endpointName>

Available endpoints

Following endpoints are available:

Endpoint Description
token Login user using username and password and get a session token as a response.
api/signout Logs out a user session.
api/expression Runs an expression.
api/expression/query Runs query written using the expression language and returns result data as response.
api/filters Get filters for all models or filters for a single model.
api/serverinfo Returns common system information needed by UI, such as the default UI language and in whether SSO has been configured.
api/importfile Import data into datatable from .csv, .xes or .pacm file.
api/usersettings Save user specific settings to the server.
api/operations/terminate Stops the defined tasks (by the task id) to save computing resources.
api/analysis/cancel Stops currently running tasks (by the task identifier) to save computing resources.
Saml2/Acs Identity provider (IdP) will send the SAML 2.0 assertion to this endpoint which will respond with 302 to redirect to QPR ProcessAnalyzer UI.
Saml2 Returns the SAML 2.0 service provider (SP) metadata, if SAML 2.0 authentication has been configured.

In addition, there are endpoints for

Usage examples

Run query to fetch data

Following Python function performs a query to fetch data from QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) run the query, (3) write fetched data to a file, and (4) log out.

The query is in the "json" parameter of the /api/expression/query request. For example, query for a chart can be found in the chart settings Advanced tab by clicking the Query button.

def runQuery(serverUrl: str, username: str, password: str):
  import requests
  import json
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
  
  queryResponse = requests.post(
    url = serverUrl + "/api/expression/query",
    headers = {
      "Authorization": "Bearer " + sessionToken
    },
    json = {
      "ProcessingMethod": "dataframe",
      "ContextType": "model",
      "ModelId": 1,
      "Root": "Cases",
      "MaximumRowCount": 10,
      "Dimensions": None,
      "Values": [
        {
          "Name": "CaseId",
          "Expression": "CaseId"
        },
        {
          "Name": "StartTime",
          "Expression": "AggregateFrom(Events, \"Min\", TimeStamp)"
        },
        {
          "Name": "EndTime",
          "Expression": "AggregateFrom(Events, \"Max\", TimeStamp)"
        },
        {
          "Name": "EventCount",
          "Expression": "AggregateFrom(Events, \"Count\")"
        },
        {
          "Name": "EventTypeCount",
          "Expression": "AggregateFrom(Events, \"CountDistinct\", EventType)"
        }
      ],
      "Ordering": [
        {
          "Name": "CaseId",
          "Direction": "Ascending"
        }
      ]
    }
  )
  queryResponse.raise_for_status()
    
  with open("QueriedData.json", "w") as f:
    json.dump(queryResponse.json(), f)

  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()

The function can be called as follows:

runQuery(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo"
)

Trigger script run

Following Python function starts a script in QPR ProcessAnalyzer by calling the REST API. It performs following steps: (1) login to QPR ProcessAnalyzer, (2) start the script, and (3) log out. The call just starts the script without waiting for it to complete (asynchronous behavior).

def startQprProcessAnalyzerScript(serverUrl: str, username: str, password: str, scriptId: int):
  import requests
  loginData = {
    "grant_type": "password",
    "username": username,
    "password": password
  }
  loginResponse = requests.post(
    url = serverUrl + "/token",
    data = loginData
  )
  loginResponse.raise_for_status()
  sessionToken = loginResponse.json().get("access_token")
  
  startScriptResponse = requests.post(
    url = serverUrl + "/api/scripts/run/" + str(scriptId),
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  startScriptResponse.raise_for_status()

  logOutResponse = requests.post(
    url = serverUrl + "/api/signout",
    headers = {
      "Authorization": "Bearer " + sessionToken,
      "Content-type": "application/json"
    }
  )
  logOutResponse.raise_for_status()

The function can be called as follows:

startQprProcessAnalyzerScript(
  serverUrl = "https://server.onqpr.com/qprpa",
  username = "qpr",
  password = "demo",
  scriptId = 1
)

The script id can be found in the scripts list in the Workspace.

Synchronize users and groups

Following script written in Python updates QPR ProcessAnalyzer users and groups based on the provided dataset. This script can be extended to fetch the user data from an external source (e.g., Azure AD) to implement a complete user management integration between the systems.

This script performs following steps:

  1. Read the provided dataset and store it to in-memory structures.
  2. Read all users from QPR ProcessAnalyzer (including which groups the users belong to). (POST /api/expression/query)
  3. Read all groups from QPR ProcessAnalyzer. (POST /api/expression/query)
  4. Determine the gap between the current state in the user management and the provided dataset.
  5. Create new users appearing in the dataset to QPR ProcessAnalyzer. (POST /api/users)
  6. Inactivate non-existing users in the dataset from QPR ProcessAnalyzer. (PUT /api/users)
  7. Activate existing inactive users in QPR ProcessAnalyzer that exist in the dataset. (PUT /api/users)
  8. Add users to groups and remove from groups based on the determined gap in the state. (PUT/DELETE /api/users/memberships)

Users are queried as follows:

{
   "Dimensions": null,
   "Values": [
      {
         "Name": "Id",
         "Expression": "Id"
      },
      {
         "Name": "Name",
         "Expression": "Name"
      },
      {
         "Name": "IsActive",
         "Expression": "IsActive"
      },
      {
         "Name": "Groups",
         "Expression": "ToJson(OrderByValue(Groups.Id))"
      }
   ],
   "Root": "Users",
   "ContextType": "generic"
}

Groups are queried as follows:

{
   "Dimensions": null,
   "Values": [
      {
         "Name": "Id",
         "Expression": "Id"
      },
      {
         "Name": "Name",
         "Expression": "Name"
      }
   ],
   "Root": "UserGroups",
   "ContextType": "generic"
}

Request /api/users/memberships body:

{
  "GroupId": 1,
  "MemberId": 2,
  "RoleName": "Member"
}